PROJECT CATEGORY: Energy & Sustainability

STARTUP: Volexion

WEBSITE: www.volexion-inc.com

PROJECT TITLE: Graphene Precursor Optimization & Scale-up

PROJECT DESCRIPTION

Volexion is a Venture backed startup commercializing a breakthrough graphene technology enabling the next generation of Li-ion battery materials. Our first product is a drop-in high energy cathode material with 10x better performance than state of the art, moving the Li-ion and electric vehicle industry 10 years forward. We are a spinoff of Northwestern University, we scaled up at Argonne National Lab, and we are backed by leading US climate tech venture funds and government agencies.

Volexion uses a graphene precursor mixture in its conformal carbon coating technology for advanced lithium-ion battery active materials. The first step in this process is producing graphene from graphite which is a high shear process that is often inefficient. The overarching goal of this project is to identify, recommend, and implement opportunities to improve graphene production process in order to enable a facile scale-up and maximize environmental impact.

JOB EXPECTATIONS:

This student will work with Staff at Volexion to design, execute and interpret experiments in order to optimize graphene production (throughput, yield, efficiency), as we are preparing to scale-up the graphene precursor production. It is believed that our manufacturing process (exfoliation and/or purification) can be significantly streamlined to be well positioned for our next stage of growth. This project will take a first principle approach, leveraging the traditional engineering toolkit, to identify and zero-in on "low-hanging" fruits opportunities to improve the graphene production.

DESIRED EXPERIENCE:

We are looking for Bachelor or Master Students preparing to major in one or several of the following areas:
+ Chemical engineering
+ Chemistry, Electrochemistry
+ Material Science
+ Mechanical Engineering

The ideal candidate for this role will have hands on experience in the following areas:
+ Chemical lab experience, with ability to handle volumes of chemicals up to 5 gallons
+ Demonstrated ability to analyze large data sets, make inferences and draw conclusions
+ Clear & concise communication skills.
+ Commissioning/troubleshooting/maintaining/operating mechanical equipment and instrumentation [while our projects are chemical in nature, experience with tools/machinery/instrumentation will serve the student greatly]
SUMMER SCHOLARS PROJECTS

TIME COMMITMENT:

Given our many projects and commitments, and demonstrated inbound interest from students, we will prioritize applicants that are able to dedicate their full-time to this assignment over a 8 week period. If mutually agreeable, longer projects will be considered.

TRAINING MENTORING:

Initial Meeting:
- The intern will meet with the project supervisor to discuss the project goals and objectives, as well as the expectations for the internship.
- The intern will be provided with a project overview, including relevant background information, literature review, and experimental protocols.
- The intern will be given a tour of the lab facilities and introduced to the lab equipment, procedures, and safety procedures.

Weekly Progress Meetings:
- The intern will meet with the project supervisor on a weekly basis to discuss progress, any challenges encountered, and next steps.
- The supervisor will provide guidance and feedback on the experimental design and data analysis.
- The intern will also have the opportunity to ask questions and receive feedback on any challenges they may be facing.

Data Analysis and Interpretation:
- The intern will be trained on data analysis and statistical methods and will receive guidance on the interpretation of results.
- The supervisor will provide feedback on data analysis and interpretation and will help the intern to identify any trends or patterns in the data.

Research Presentations:
- The intern will be required to give presentations on their research progress and findings to the lab group and other relevant stakeholders.
- The supervisor will provide feedback on the intern's presentation skills and will help the intern to improve their communication and presentation skills.

Final Report and Presentation:
- The intern will be required to prepare a final report and give a final presentation on their research project.
- The supervisor will provide feedback on the report and presentation and will help the intern to prepare for the final submission.

Evaluation and Feedback:
- At the end of the internship, the supervisor will provide the intern with an evaluation and feedback on their performance.
- The intern will also have the opportunity to provide feedback on their mentoring experience and the internship program.

Feedback will be given informally regularly during the internship, as well as with two formalized sessions, one occurring halfway through the internship and a written evaluation occurring at the end of the internship. The development of the intern will focus on improving problem solving skills in a professional engineering context, solidifying verbal and written technical communication, and emphasizing collaborative engineering work.